Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1276031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239742

RESUMO

Outbreaks of viral diseases in animals are a cause of concern for animal welfare and economics of animal production. One way to disrupt the cycle of infection is by combating viruses in the environment and prohibiting them from being transmitted to a new host. Viral contamination of the environment can be reduced using well-tested and efficacious disinfectants. Duplalim is a commercially available disinfectant consisting of 12% glutaraldehyde and 10% quaternary ammonium compounds. We evaluated this disinfectant for its efficacy against several viruses in poultry (n = 3), pigs (n = 5), dogs (n = 2), and cattle (n = 4). In suspension tests, 1:100 dilution of Duplalim was found to inactivate more than 99% of these 14 viruses in 15 min or less. The titers of a majority of these viruses decreased by ≥99.99% in <60 min of contact time. In conclusion, the ingredient combination in Duplalim is very effective in inactivating common viruses of domestic animals and poultry.

2.
Sci Rep ; 11(1): 24318, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934121

RESUMO

The COVID-19 pandemic presents a unique challenge to the healthcare community due to the high infectivity rate and need for effective personal protective equipment. Zinc oxide nanoparticles have shown promising antimicrobial properties and are recognized as a safe additive in many food and cosmetic products. This work presents a novel nanocomposite synthesis approach, which allows zinc oxide nanoparticles to be grown within textile and face mask materials, including melt-blown polypropylene and nylon-cotton. The resulting nanocomposite achieves greater than 3 log10 reduction (≥ 99.9%) in coronavirus titer within a contact time of 10 min, by disintegrating the viral envelope. The new nanocomposite textile retains activity even after 100 laundry cycles and has been dermatologist tested as non-irritant and hypoallergenic. Various face mask designs were tested to improve filtration efficiency and breathability while offering antiviral protection, with Claros' design reporting higher filtration efficiency than surgical masks (> 50%) for particles ranged 200 nm to 5 µm in size.


Assuntos
Máscaras/virologia , Nanocompostos/toxicidade , SARS-CoV-2/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , COVID-19/prevenção & controle , COVID-19/virologia , Filtração/métodos , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Nylons/química , Polipropilenos/química , SARS-CoV-2/isolamento & purificação , Têxteis/análise , Óxido de Zinco/química
3.
PLoS One ; 16(1): e0244977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507951

RESUMO

Researchers must be able to measure concentrations, sizes, and infectivity of virus-containing particles in animal agriculture facilities to know how far infectious virus-containing particles may travel through air, where they may deposit in the human or animal respiratory tract, and the most effective ways to limit exposures to them. The objective of this study was to evaluate a variety of impinger and cyclone aerosol or bioaerosol samplers to determine approaches most suitable for detecting and measuring concentrations of virus-containing particles in air. Six impinger/cyclone air samplers, a filter-based sampler, and a cascade impactor were used in separate tests to collect artificially generated aerosols of MS2 bacteriophage and swine and avian influenza viruses. Quantification of infectious MS2 coliphage was carried out using a double agar layer procedure. The influenza viruses were titrated in cell cultures to determine quantities of infectious virus. Viral RNA was extracted and used for quantitative real time RT-PCR, to provide total virus concentrations for all three viruses. The amounts of virus recovered and the measured airborne virus concentrations were calculated and compared among the samplers. Not surprisingly, high flow rate samplers generally collected greater quantities of virus than low flow samplers. However, low flow rate samplers generally measured higher, and likely more accurate, airborne concentrations of Infectious virus and viral RNA than high flow samplers. To assess airborne viruses in the field, a two-sampler approach may work well. A suitable high flow sampler may provide low limits of detection to determine if any virus is present in the air. If virus is detected, a suitable lower flow sampler may measure airborne virus concentrations accurately.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental/instrumentação , Orthomyxoviridae/isolamento & purificação , Agricultura , Animais , Tamanho da Partícula , RNA Viral
4.
Transbound Emerg Dis ; 68(2): 296-312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32603505

RESUMO

Although the unprecedented efforts the world has been taking to control the spread of the human coronavirus disease (COVID-19) and its causative aetiology [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], the number of confirmed cases has been increasing drastically. Therefore, there is an urgent need for devising more efficient preventive measures, to limit the spread of the infection until an effective treatment or vaccine is available. The preventive measures depend mainly on the understanding of the transmission routes of this virus, its environmental stability, and its persistence on common touch surfaces. Due to the very limited knowledge about SARS-CoV-2, we can speculate its stability in the light of previous studies conducted on other human and animal coronaviruses. In this review, we present the available data on the stability of coronaviruses (CoVs), including SARS-CoV-2, from previous reports to help understand its environmental survival. According to available data, possible airborne transmission of SARS-CoV-2 has been suggested. SARS-CoV-2 and other human and animal CoVs have remarkably short persistence on copper, latex and surfaces with low porosity as compared to other surfaces like stainless steel, plastics, glass and highly porous fabrics. It has also been reported that SARS-CoV-2 is associated with diarrhoea and that it is shed in the faeces of COVID-19 patients. Some CoVs show persistence in human excrement, sewage and waters for a few days. These findings suggest a possible risk of faecal-oral, foodborne and waterborne transmission of SARS-CoV-2 in developing countries that often use sewage-polluted waters in irrigation and have poor water treatment systems. CoVs survive longer in the environment at lower temperatures and lower relative humidity. It has been suggested that large numbers of COVID-19 cases are associated with cold and dry climates in temperate regions of the world and that seasonality of the virus spread is suspected.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , Clima , Meio Ambiente , Saúde Global , Humanos , Estações do Ano , Tato
5.
PLoS One ; 15(5): e0232890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392237

RESUMO

Diarrhea caused by Escherichia coli in calves is an important problem in terms of survivability, productivity and treatment costs. In this study, 88 of 150 diarrheic animals tested positive for E. coli. Of these, 54 samples had mixed infection with other bacterial and/or parasitic agents. There are several diarrheagenic E. coli pathotypes including enteropathogenic E. coli (EPEC), Shiga-toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) and necrotoxigenic E. coli (NTEC). Molecular detection of virulence factors Stx2, Cdt3, Eae, CNF2, F5, Hly, Stx1, and ST revealed their presence at 39.7, 27.2, 19.3, 15.9, 13.6, 9.0, 3.4, and 3.4 percent, respectively. As many as 13.6% of the isolates lacked virulence genes and none of the isolate had LT or CNF1 toxin gene. The odds of isolating ETEC from male calves was 3.6 times (95% CI: 1.1, 12.4; P value = 0.042) that of female calves, whereas the odds of isolating NTEC from male calves was 72.9% lower (95% CI: 91.3% lower, 15.7% lower; P value = 0.024) than that in females. The odds of isolating STEC in winter was 3.3 times (95% CI: 1.1, 10.3; P value = 0.037) that of spring. Antibiograms showed 48 (54.5%) of the isolates to be multi-drug resistant. The percent resistance to tetracycline, streptomycin, ampicillin, and trimethoprim-sulfamethoxazole was 79.5, 67.0, 54.5, and 43.0, respectively. Ceftazidime (14.8%), amoxicillin-clavulanic acid (13.6%) and aztreonam (11.3%) showed the lowest resistance, and none of the isolates was resistant to imipenem. The results of this study can help improve our understanding of the epidemiological aspects of E. coli infection and to devise strategies for protection against it. The prevalence of E. coli pathotypes can help potential buyers of calves to avoid infected premises. The antibiograms in this study emphasizes the risks associated with the random use of antibiotics.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Diarreia/veterinária , Infecções por Escherichia coli/veterinária , Criação de Animais Domésticos , Animais , Búfalos , Bovinos , Diarreia/epidemiologia , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Feminino , Masculino , Testes de Sensibilidade Microbiana , Fatores de Risco , Estações do Ano , Fatores de Virulência/genética
6.
Food Microbiol ; 85: 103307, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500711

RESUMO

Cold atmospheric-gaseous plasma (CAP) is an emerging non-thermal technology for decontamination of foodborne bacterial and viral pathogens. We obtained a >5 log10 reduction in the titer (TCID50) of feline calicivirus (FCV) on stainless steel discs and Romaine lettuce leaves after 3 min wet exposure to air plasma generated by a two-dimensional array of integrated coaxial-microhollow dielectric barrier discharge (2D-AICM-DBD). However, when human norovirus (HuNoV GII.4) was treated for 5 min under the same conditions, ~2.6 log10 (>99.5%) reduction in genome copy number was observed as measured by ethidium monoazide-coupled RT-qPCR (EMA-RT-qPCR). To assess this discrepancy, we studied CAP's effect on FCV by the cell culture method and by the EMA-coupled RT-qPCR method. It was found that the molecular titration method (EMA-RT-qPCR) underestimates the level of virus reduction by CAP. Additionally, the fecal matter present in HuNoV samples partially suppressed virucidal activity of CAP. Assuming that the lower virus reduction measured by EMA-RT-qPCR method compared to cell culture method for FCV is the same as for HuNoV, we can conclude that FCV may be used as a surrogate for HuNoV to assess the virucidal effect of CAP. CAP is able to inactivate 3.5 Log10 units of HuNoV at low titers after 2 min of exposure.


Assuntos
Fezes/virologia , Norovirus/efeitos dos fármacos , Gases em Plasma/farmacologia , Inativação de Vírus/efeitos dos fármacos , Azidas , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/genética , Desinfecção/métodos , Humanos , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Aço Inoxidável
7.
Foodborne Pathog Dis ; 17(3): 157-165, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31613646

RESUMO

We studied the efficacy of cold atmospheric-pressure plasma (CAP), generated by a two-dimensional array of integrated, coaxial, microhollow, dielectric barrier discharge plasma, against Salmonella enterica serovar Heidelberg (SH) on stainless steel, romaine lettuce, and chicken breast. Exposure of SH to CAP on a dry stainless steel surface had low bactericidal efficacy; only 2.5 log10 colony-forming units (CFUs) were inactivated after 10 min of exposure. On the other hand, the presence of moisture led to decontamination of ∼6.5 log10 CFUs after only 3 min. Although complete decontamination was not achieved on lettuce and chicken breast samples after 10 min of exposure, SH counts were reduced by ∼4.5 and 3.7 log10 CFUs, respectively. A partial suppression of bactericidal effects was observed on steel surfaces when it was coated with bovine serum albumin before spiking with bacteria and exposure to plasma, indicating that the proteinaceous nature of chicken meat may be partially responsible for lower efficacy of CAP on chicken muscles. The initial bacterial load was also found to affect the anti-SH efficacy; at high (∼6.5 log CFUs) and low (∼3.5 CFUs) initial counts, the time required for complete decontamination on stainless steel and lettuce decreased from 3 to 0.5 min and >10 to 1 min, respectively. However, the analysis of inactivation kinetics showed that effects of initial loads of contamination on the rate of bacterial inactivation were not statistically significant. This is consistent with other findings for conditions where both bacterial loads were under the multilayering threshold that might have affected the rate of killing.


Assuntos
Descontaminação/instrumentação , Descontaminação/métodos , Gases em Plasma/farmacologia , Salmonella enterica/efeitos dos fármacos , Animais , Contagem de Colônia Microbiana , Contaminação de Equipamentos , Contaminação de Alimentos , Microbiologia de Alimentos , Aves Domésticas/microbiologia , Sorogrupo , Aço Inoxidável
8.
PLoS One ; 13(3): e0194618, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566061

RESUMO

Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid.


Assuntos
Argônio , Calicivirus Felino/metabolismo , Proteínas do Capsídeo/metabolismo , Gases em Plasma , Inativação de Vírus , Animais , Argônio/uso terapêutico , Coagulação com Plasma de Argônio , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/terapia , Infecções por Caliciviridae/veterinária , Calicivirus Felino/ultraestrutura , Doenças do Gato/metabolismo , Doenças do Gato/terapia , Doenças do Gato/virologia , Gatos , Células Cultivadas , Temperatura Baixa , Oxirredução , Oxigênio/metabolismo , Gases em Plasma/uso terapêutico , Proteólise
9.
J Food Prot ; 79(6): 1001-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27296605

RESUMO

Foodborne viruses, particularly human norovirus, are a concern for public health, especially in fresh vegetables and other minimally processed foods that may not undergo sufficient decontamination. It is necessary to explore novel nonthermal techniques for preventing foodborne viral contamination. In this study, aqueous extracts of six raw food materials (flower buds of clove, fenugreek seeds, garlic and onion bulbs, ginger rhizomes, and jalapeño peppers) were tested for antiviral activity against feline calicivirus (FCV) as a surrogate for human norovirus. The antiviral assay was performed using dilutions of the extracts below the maximum nontoxic concentrations of the extracts to the host cells of FCV, Crandell-Reese feline kidney (CRFK) cells. No antiviral effect was seen when the host cells were pretreated with any of the extracts. However, pretreatment of FCV with nondiluted clove and ginger extracts inactivated 6.0 and 2.7 log of the initial titer of the virus, respectively. Also, significant dosedependent inactivation of FCV was seen when host cells were treated with clove and ginger extracts at the time of infection or postinfection at concentrations equal to or lower than the maximum nontoxic concentrations. By comprehensive two-dimensional gas chromatography-mass spectrometry analysis, eugenol (29.5%) and R-(-)-1,2-propanediol (10.7%) were identified as the major components of clove and ginger extracts, respectively. The antiviral effect of the pure eugenol itself was tested; it showed antiviral activity similar to that of clove extract, albeit at a lower level, which indicates that some other clove extract constituents, along with eugenol, are responsible for inactivation of FCV. These results showed that the aqueous extracts of clove and ginger hold promise for prevention of foodborne viral contamination.


Assuntos
Antivirais/farmacologia , Calicivirus Felino/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Animais , Gatos , Linhagem Celular , Humanos , Syzygium
10.
Appl Environ Microbiol ; 81(11): 3612-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795667

RESUMO

Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces.


Assuntos
Antivirais/farmacologia , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/farmacologia , Ar , Antivirais/química , Argônio/farmacologia , Humanos , Oxigênio/farmacologia , Gases em Plasma/química , Fatores de Tempo , Carga Viral
11.
Food Environ Virol ; 6(4): 282-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129102

RESUMO

Foodborne viruses, particularly human norovirus (NV) and hepatitis virus type A, are a cause of concern for public health making it necessary to explore novel and effective techniques for prevention of foodborne viral contamination, especially in minimally processed and ready-to-eat foods. This study aimed to determine the antiviral activity of a probiotic lactic acid bacterium (LAB) against feline calicivirus (FCV), a surrogate of human NV. Bacterial growth medium filtrate (BGMF) of Lactococcus lactis subsp. lactis LM0230 and its bacterial cell suspension (BCS) were evaluated separately for their antiviral activity against FCV grown in Crandell-Reese feline kidney (CRFK) cells. No significant antiviral effect was seen when CRFK cells were pre-treated with either BGMF (raw or pH 7-adjusted BGMF) or BCS. However, pre-treatment of FCV with BGMF and BCS resulted in a reduction in virus titers of 1.3 log10 tissue culture infectious dose (TCID)50 and 1.8 log10 TCID50, respectively. The highest reductions in FCV infectivity were obtained when CRFK cells were co-treated with FCV and pH 7-adjusted BGMF or with FCV and BCS (7.5 log10 TCID50 and 6.0 log10 TCID50, respectively). These preliminary results are encouraging and indicate the need for continued studies on the role of probiotics and LAB on inactivation of viruses in various types of foods.


Assuntos
Antivirais/metabolismo , Infecções por Caliciviridae/metabolismo , Calicivirus Felino/crescimento & desenvolvimento , Gastroenterite/metabolismo , Lactococcus lactis/metabolismo , Probióticos/metabolismo , Animais , Antivirais/uso terapêutico , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/transmissão , Infecções por Caliciviridae/virologia , Calicivirus Felino/isolamento & purificação , Calicivirus Felino/metabolismo , Calicivirus Felino/patogenicidade , Gatos , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Doenças Transmitidas por Alimentos/metabolismo , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Humanos , Concentração de Íons de Hidrogênio , Lactococcus lactis/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Norovirus/isolamento & purificação , Norovirus/metabolismo , Norovirus/patogenicidade , Probióticos/uso terapêutico , Carga Viral , Inativação de Vírus
12.
Braz J Microbiol ; 44(2): 559-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294255

RESUMO

One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Cátions Bivalentes/metabolismo , Meios de Cultura/química , Inibidores Enzimáticos/metabolismo , Fermentação , Temperatura , Fatores de Tempo
13.
Braz. j. microbiol ; 44(2): 559-567, 2013. tab
Artigo em Inglês | LILACS | ID: lil-688589

RESUMO

One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/ 50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 ºC for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 ºC for 96 h. In other words, increasing fermentation temperature from 30 ºC to 35 ºC resulted in increasing tannase production.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Cátions Bivalentes/metabolismo , Meios de Cultura/química , Inibidores Enzimáticos/metabolismo , Fermentação , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...